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ABSTRACT: Under the higher risk of water pollution issues posed by extreme weather, this 

research proposes an approach to investigate the adverse health effects of environmental hazards 

on socially vulnerable populations. The Shapley additive explanation (SHAP) is adopted to 

interpret the Extreme Gradient Boosting (XGBoost) model to discern the contributions of socio-

demographic variables to colorectal disease risks within elevated nitrate water pollution areas in 

Iowa. The comparison between the XGBoost model and the Multi-scale Geographically 

Weighted Regression (MGWR) shows a better model fit with XGBoost. The feature importance 

results suggest that populations with housing cost burden and lower levels of education 

attainment are vulnerable to colorectal cancer risk associated with nitrate pollution. In the 

southwest areas of Iowa, this effect is more evident for the population facing housing cost 

burdens. 
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Introduction 
Climate change is amplifying the duration and frequency of extreme weather events, such 

as droughts and floods. In agricultural areas, these events increase nitrate concentration in 

hydrological systems, posing a threat to private wells. Well users are responsible for the 

stewardship to maintain their water quality while their socio-economic status influences 

their ability to stewardship. Meanwhile, epidemiologic studies found strong evidence for 

the association between nitrate exposure, especially above 5mg/L, and certain diseases 

(Schullehner et al., 2018).  

Previous research has explored the relationship between socio-demographic characteristics 

and drinking water pollution using areal unit data, like the American Community Survey 

(ACS), and household surveys (Andrew George et al., 2023; Soriano Jr. et al., 2023). 

However, the absence of areal dataset on stewardship behaviors impedes the analysis of 

whether people residing in nitrate-polluted areas are vulnerable in health. Household 

surveys offer insights into social disparities in stewardship but are limited by sample sizes 

and recall bias. Moreover, complex factors like water table level and well depth complicate 

the examination of vulnerability correlations through linear regression. 

Using the conceptual framework in Figure 1, this study aims to address the questions: Who 

are the populations vulnerable to the health risks posed by nitrate pollution in drinking well 

water? Where are they? To answer these questions, the study integrates data on well water 

nitrate levels and conducts regression analysis with an interpretable machine learning 

approach between socio-demographic factors and colorectal cancer risk rates.  



 

Figure 1 Conceptual Framework 

 

Data 
Nitrate test results from 8,532 shallow wells (<100 feet) in Iowa (2014-2018) were 

analyzed using data from the Private Well Tracking System by the Iowa DNR. Tracts of 

elevated (>=5 mg/L) and not-elevated (<5 mg/L) nitrate levels were categorized, as shown 

in Figure 2, through interpolation and zonal statistics.  

 

 

Figure 2 Elevated nitrate pollution tracts in Iowa 

 

Seven socio-demographic indicators from ACS 2016-2020 5-year estimates were analyzed 

at the census tract level in Iowa as measures of social vulnerability. These include: The 

percentage of African American (EP_AFAM), Hispanic (EP_HISP), high housing cost 

burden (EP_HBURD), adults over 25 without a high school diploma (EP_NOHSDP), 

individuals below 150% poverty line (EP_POV150), people aged 65+ (EP_AGE65), and 

population density (POPDEN). 



The colorectal cancer incidence rates (2014 - 2018) from the Iowa Cancer Registry website 

(Iowa Cancer Registry, 2024) were used to evaluate the health impact of nitrate exposure. 

This measure compares the cancer incidence probability in each unit against statewide rates 

(Ward et al., 2019). Major city areas were excluded to minimize influence of public water 

systems, as illustrated in Figure 3. 

 

 

Figure 3 Relative risk of colorectal cancer in Iowa, 2014-2018 

 

Method 

The Extreme Gradient Boosting (XGBoost) model is used for regression analysis with the 

relative risk of colorectal cancer incidence as the dependent variable and the seven social 

vulnerability indicators as the features. It is unaffected by multicollinearity, which 

improves the investigation of the relationship among the influential while correlated 

variables.  

The SHapely Addictive explanations (SHAP) analysis is used to interpret the contribution 

of the explanatory variables to the prediction result (Lundberg & Lee, 2017). SHAP is 

based on game theory, aiming to measure the importance of each feature in the model. The 

Shapley value for feature 𝑖 in a model 𝑓 is calculated by:     

𝜙𝑖(𝑓) =  ∑
|𝑆|! (𝑛 − |𝑆| − 1)!

𝑛!
𝑆⊆𝑁\{𝑖}

[𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆)] 

 

Here, 𝑛 is the total number of features, 𝑁\{𝑖} is all the combinations of features excluding 

feature 𝑖, 𝑆 one of the subsets of 𝑁\{𝑖}, 𝑓(𝑆) is the model prediction with feature values in 

𝑆 , 𝑓(𝑆 ∪ {𝑖})  is the model prediction with feature values in 𝑆  and feature value of 𝑖 . 

𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆) calculate the difference between prediction results of whether adding 

the feature 𝑖. The SHAP value reflects a feature's contribution to a prediction: positive for 

enhancing and negative for diminishing the prediction. Thus, it could be used to interpret 



the regression results to reveal the impact of socio-demographic factors on predicting 

colorectal cancer risk.  

A recent finding indicates that SHAP-explained XGBoost can better identify spatial and 

non-spatial effects than multiscale geographically weighted regression (MGWR) (Li, 

2022). To further verify, the MGWR model was also fitted to compare the performance. 

 

Results 
The regression analysis was performed on 128 elevated nitrate tracts in Iowa. The dataset 

for 277 not-elevated nitrate tracts was trained for comparison. XGBoost has the R2 value 

of 0.93 on elevated tracts and 0.92 on not elevated tracts. While MGWR has R2 value of 

0.71 on elevated tracts and 0.81 on not elevated tracts. Figure 4 displays the SHAP 

summary plot with the top 15 contributing feature effects and interaction effects. The high 

contribution of X and Y coordinates and their interactions indicates a notable spatial effect. 

The following socio-demographic characteristics are Hispanic, high housing cost burden, 

people above 65, population density and persons with no high school diploma. Moreover, 

the SHAP identifies some interaction effects between location and socio-demographic 

characteristics. 

Table 1 compares the mean SHAP values of each feature between areas with elevated and 

not-elevated nitrate pollution. A high ratio for certain features indicates its different effect 

on colorectal disease risk in areas of different nitrate levels. Characteristics of African 

Americans, high housing cost burden, persons with no high school diploma, Hispanic and 

persons aged 65 and older show noticeable differences. Among these features, the positive 

mean SHAP of housing cost burden and low education attainment suggests a correlation 

with a high risk of colorectal disease. Conversely, negative mean SHAP values for racial 

minority groups, including African American and Hispanic, highlight their association with 

a lower risk of colorectal disease. Additionally, while spatial effect contributes 

significantly to prediction results, their differences between the high and low nitrate level 

areas are not as pronounced as those observed in socio-demographic features.  

 



 

Figure 4 SHAP summary plot for the elevated nitrate model 

 

Table 1 Comparison of feature importance at elevated and not elevated nitrate areas 

Characteristics 

Elevated   

 (> 5 mg/L) 

Not elevated  

(< 5 mg/L) Ratio 

% of Black/African American -0.0138 -0.0008 16.7710 

% of high housing cost burden 0.0986 0.0091 10.8498 

% of persons with no high school diploma (age 25+) 0.0897 0.0085 10.5196 

Y coordinate -0.2678 -0.0834 3.2113 

X coordinate -0.1131 -0.2431 0.4652 

% of persons below 150% poverty -0.0068 0.0683 -0.0990 

Population density 0.0265 -0.0366 -0.7239 

% of persons aged 65 and older 0.0108 -0.0031 -3.5139 

% of Hispanic -0.0855 0.0030 -28.3155 

 

Figure 6 displays the spatial distribution of SHAP values for housing cost burden. Red 

tracts indicate a positive contribution to colorectal disease risk, and blue tracts indicate a 

negative contribution. A cluster in the southwest for housing cost burden shows its positive 

influence on increasing disease risk. 



 

Figure 5 Spatial pattern of the SHAP values for housing cost burden by census tracts 

 

Conclusions 
This study investigates the relationship among nitrate pollution, socio-demographic 

characteristics, and colorectal cancer risk. We utilized SHAP-explained XGBoost to 

conduct vulnerability analysis by identifying feature contributions, spatial effects, and 

interaction effects. The findings highlight the increased vulnerability of populations with 

housing cost burdens and lower education levels, which suggests that stewardship 

behaviors among private well users relate more to economic burdens and literacy, 

particularly in Iowa’s southwest. 

Future work will further address current limitations. First, areas with a higher risk of 

colorectal cancer may be affected by nitrate pollution from urban community water 

services. Removing tracts with major city areas leads to decreased data volume and may 

cause bias. So further analysis could benefit from disease incidences at a finer scale. 

Second, considering the time lag effect in the exposure to nitrate and increased risk of 

colorectal disease, the interpretable results can be improved by incorporating older nitrate 

level data.  

This study offers valuable insights into the socio-demographic and spatial disparities 

among well users in agricultural areas, which underlines the importance of targeted 

interventions for water quality and private well stewardship in vulnerable communities. 

This becomes increasingly vital with the heightened risk from extreme weather events 

affecting water quality. 
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